Comparison of three validated systems to analyze spinal shape and motion

  • Freburger, JK et al. The rising prevalence of chronic low back pain. Arch. Intern. medication 169, 251-258. https://doi.org/10.1001/archinternmed.2008.543 (2009).

    Article PubMed PubMed Central Google Scholar

  • Dieleman, JL et al. US health care spending by payer and health condition, 1996-2016. JAMA 323, 863–884. https://doi.org/10.1001/jama.2020.0734 (2020).

    Article PubMed PubMed Central Google Scholar

  • Foster, NE et al. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. lancet 391, 2368-2383. https://doi.org/10.1016/S0140-6736(18)30489-6 (2018).

    Article PubMedGoogle Scholar

  • Taimela S, Kujala UM, Salminen JJ & Viljanen T. The prevalence of low back pain among children and adolescents. A nationwide, cohort-based questionnaire survey in Finland. Spine (Phila Pa 1976) 22, 1132–1136. https://doi.org/10.1097/00007632-199705150-00013 (1997).

    CAS ArticleGoogle Scholar

  • Calvo-Munoz I, Gomez-Conesa A & Sanchez-Meca J. Prevalence of low back pain in children and adolescents: A meta-analysis. BMC Pediatr. 1314. https://doi.org/10.1186/1471-2431-13-14 (2013).

    Article PubMed PubMed Central Google Scholar

  • Nattrass CL, Nitschke JE, Disler PB, Chou MJ & Ooi KT Lumbar spine range of motion as a measure of physical and functional impairment: An investigation of validity. clinical rehabilitated 13, 211-218. https://doi.org/10.1177/026921559901300305 (1999).

    CAS Article PubMedGoogle Scholar

  • Tsushima, H., Morris, ME & McGinley, J. Test-retest reliability and inter-tester reliability of kinematic data from a three-dimensional gait analysis system. J.Jpn. physics thermal associate 6, 9-17. https://doi.org/10.1298/jjpta.6.9 (2003).

    Article PubMed PubMed Central Google Scholar

  • Cagnie B, Cools A, De Loose V, Cambier D & Danneels L. Reliability and normative database of the Zebris cervical range-of-motion system in healthy controls with preliminary validation in a group of patients with neck pain. J. Manipulative Physiol. thermal 30, 450–455. https://doi.org/10.1016/j.jmpt.2007.05.003 (2007).

    Article PubMedGoogle Scholar

  • Whimsical, M et al. A new approach to assess movements and isometric postures of spine and trunk at the workplace. Eur. Spine J. 20, 1393–1402. https://doi.org/10.1007/s00586-011-1777-7 (2011).

    Article PubMed PubMed Central Google Scholar

  • Hamacher, D., Bertram, D., Folsch, C. & Schega, L. Evaluation of a visual feedback system in gait retraining: A pilot study. Gait Posture 36, 182-186. https://doi.org/10.1016/j.gaitpost.2012.02.012 (2012).

    Article PubMedGoogle Scholar

  • Gill, KP & Callaghan, MJ Intratester and intertester reproducibility of the lumbar motion monitor as a measure of range, velocity and acceleration of the thoracolumbar spine. clinical biomech. (Bristol, Avon) 11, 418-421. https://doi.org/10.1016/0268-0033(96)00031-9 (1996).

    CAS ArticleGoogle Scholar

  • Slate, C et al. Optimization of inertial sensor-based motion capturing for magnetically distorted field applications. J Biomech. Closely. 136121008. https://doi.org/10.1115/1.4028822 (2014).

    Article PubMedGoogle Scholar

  • Guermazi, M. et al. Validity and reliability of Spinal Mouse to assess lumbar flexion. ann. adapt. Med. Phys. 49, 172-177. https://doi.org/10.1016/j.annrmp.2006.03.001 (2006).

    CAS Article PubMedGoogle Scholar

  • Livanelioglu A, Kaya F, Nabiyev V, Demirkiran G & Firat T. The validity and reliability of “Spinal Mouse” assessment of spinal curvatures in the frontal plane in pediatric adolescent idiopathic thoraco-lumbar curves. Eur. Spine J. 25, 476-482. https://doi.org/10.1007/s00586-015-3945-7 (2016).

    Article PubMedGoogle Scholar

  • Post, RB & Leferink, VJ Spinal mobility: Sagittal range of motion measured with the SpinalMouse, a new non-invasive device. Arch. Orthop. trauma surgery 124, 187-192. https://doi.org/10.1007/s00402-004-0641-1 (2004).

    CAS Article PubMedGoogle Scholar

  • Consmuller, T. et al. Comparative evaluation of a novel measurement tool to assess lumbar spine posture and range of motion. Eur. Spine J. 21, 2170–2180. https://doi.org/10.1007/s00586-012-2312-1 (2012).

    Article PubMed PubMed Central Google Scholar

  • Degenhardt BF, Starks Z & Bhatia S. Reliability of the DIERS formetric 4D spine shape parameters in adults without postural deformities. Biomed. Res. Int. 20201796247. https://doi.org/10.1155/2020/1796247 (2020).

    Article PubMed PubMed Central Google Scholar

  • Ohlendorf, D. et al. Standard reference values ​​of the upper body posture in healthy male adults aged between 41 and 50 years in Germany. science representative 103823. https://doi.org/10.1038/s41598-020-60813-w (2020).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Mannion AF, Knecht K, Balaban G, Dvorak J & Grob D A new skin-surface device for measuring the curvature and global and segmental ranges of motion of the spine: Reliability of measurements and comparison with data reviewed from the literature. Eur. Spine J. 13, 122-136. https://doi.org/10.1007/s00586-003-0618-8 (2004).

    Article PubMedGoogle Scholar

  • Guidetti, L. et al. Intra- and interday reliability of spine raster stereography. Biomed. Res. Int. 2013745480. https://doi.org/10.1155/2013/745480 (2013).

    Article PubMed PubMed Central Google Scholar

  • Mohokum, M. et al. Reproducibility of raster stereography for kyphotic and lordotic angles, trunk length, and trunk inclination: A reliability study (vol 35, pg 1353, 2010). spines 35, 1738–1738. https://doi.org/10.1097/BRS.0b013e3181eeb243 (2010).

    ArticleGoogle Scholar

  • Betsch, M. et al. Reliability and validity of 4D raster stereography under dynamic conditions. computers Biol. Med. 41, 308-312. https://doi.org/10.1016/j.compbiomed.2011.03.008 (2011).

    Article PubMedGoogle Scholar

  • Schulte, T.L et al. Raster stereography versus radiography in the long-term follow-up of idiopathic scoliosis. J Spinal Disord. tech 21, 23-28. https://doi.org/10.1097/BSD.0b013e318057529b (2008).

    Article PubMedGoogle Scholar

  • Perret, C. et al. Validity, reliability, and responsiveness of the fingertip-to-floor test. Arch. Phys. Med. Rehab. 82, 1566–1570. https://doi.org/10.1053/apmr.2001.26064 (2001).

    CAS Article PubMedGoogle Scholar

  • Gauvin, MG, Riddle, DL & Rothstein, JM Reliability of clinical measurements of forward bending using the modified fingertip-to-floor method. physics thermal 70, 443-447. https://doi.org/10.1093/ptj/70.7.443 (1990).

    CAS Article PubMedGoogle Scholar

  • Topalidou A, Tzagarakis G, Souvatzis X, Kontakis G & Katonis P. Evaluation of the reliability of a new non-invasive method for assessing the functionality and mobility of the spine. Acta Bioeng. biomech. Wroclaw Univ. technol. 16117–124 (2014).

    Google Scholar

  • Barrett E, McCreesh K & Lewis J. Reliability and validity of non-radiographic methods of thoracic kyphosis measurement: A systematic review. Man. thermal 19, 10–17. https://doi.org/10.1016/j.math.2013.09.003 (2014).

    Article PubMedGoogle Scholar

  • Drerup, B. & Hierholzer, E. Objective determination of anatomical landmarks on the body-surface—measurement of the vertebra prominens from surface curvature. J Biomech. 18467. https://doi.org/10.1016/0021-9290(85)90282-9 (1985).

    CAS Article PubMedGoogle Scholar

  • Drerup, B. & Hierholzer, E. Automatic localization of anatomical landmarks on the back surface and construction of a body-fixed coordinate system. J Biomech. 20, 961-970. https://doi.org/10.1016/0021-9290(87)90325-3 (1987).

    CAS Article PubMedGoogle Scholar

  • Drerup B & Hierholzer E Objective determination of anatomical landmarks on the body surface: Measurement of the vertebra prominens from surface curvature. J Biomech. 18467-474 (1985).

    CAS ArticleGoogle Scholar

  • Frobin, W. & Hierholzer, E. Analysis of human back shape using surface curvatures. J Biomech. 15379-390 (1982).

    CAS ArticleGoogle Scholar

  • Consmuller, T. et al. Velocity of lordosis angle during spinal flexion and extension. PLoS One 7, e50135. https://doi.org/10.1371/journal.pone.0050135 (2012).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Taylor WR, Consmuller T & Rohlmann A A novel system for the dynamic assessment of back shape. Med Eng physics 32, 1080–1083. https://doi.org/10.1016/j.medengphy.2010.07.011 (2010).

    Article PubMedGoogle Scholar

  • McGraw, KO & Wong, SP Forming inferences about some intraclass correlation coefficients. Psychol.Methods 1(1), 30-46. https://doi.org/10.1037/1082-989X.1.1.30 (1996).

    ArticleGoogle Scholar

  • Shrout, PE & Fleiss, JL Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 86, 420-428. https://doi.org/10.1037//0033-2909.86.2.420 (1979).

    CAS Article PubMedGoogle Scholar

  • Cicchetti, DV Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 6, 284-290. https://doi.org/10.1037/1040-3590.6.4.284 (1994).

    ArticleGoogle Scholar

  • Seichert, N., Baumann, M., Senn, E. & Zuckriegl, H. The back mouse – an analogue-digital measuring device for recording the sagittal back contour. physics Med. Rehab. spa medicine 0435-43 (1994).

    Google Scholar

  • Arshad R, Pan F, Reitmaier S & Schmidt H. Effect of age and sex on lumbar lordosis and the range of motion. A systematic review and meta-analysis. J Biomech. 82, 1-19. https://doi.org/10.1016/j.jbiomech.2018.11.022 (2019).

    Article PubMedGoogle Scholar

  • Asai, Y et al. Sagittal spino-pelvic alignment in adults: The Wakayama Spine Study. PLoS One 12, e0178697. https://doi.org/10.1371/journal.pone.0178697 (2017).

    CAS Article PubMed PubMed Central Google Scholar

  • Schroeder J, Reer R & Braumann KM Video raster stereography back shape reconstruction: A reliability study for sagittal, frontal, and transversal plane parameters. Eur. Spine J. 24, 262-269. https://doi.org/10.1007/s00586-014-3664-5 (2015).

    CAS Article PubMedGoogle Scholar

  • Related Posts